SERVICO NACIONAL DE APRENDIZAGEM COMERCIAL - SENAC
FACULDADE SENAC PORTO ALEGRE
CURSO SUPERIOR DE TECNOLOGIA EM ANALISE E DESENVOLVIMENTO
DE SISTEMAS

Yongthan Stein
Calvin Avila Custodio

RELATORIO TECNICO-CIENTIFICO DE SISTEMAS DISTRIBUIDOS

CANTINA MONETIZADA

Porto Alegre, 2017

SUMARIO

1. INTRODUGAO ...ttt
2. PROBLEMA ..ottt ettt
3. SOLUCAO DA CANTINA MONETIZADAc.coooveveveeeeeeeeenannne,
4, CONSIDERAGCOES FINAISooviviiceeeeeeeeeeeeeeeeeee e

REFERENCIAS ..o e,

1. INTRODUCAO

Este trabalho tem como objetivo desenvolver uma aplicacdo chamada Cantina
Monetizada utilizando os conceitos de comunicacdo de Sistemas Distribuidos (SD).

Os Sistemas Distribuidos sdo um conjunto de maquinas operando em rede, com 0
objetivo geral de compartilhar recursos e concluir uma tarefa em comum, tornando uma
aplicacdo mais eficiente, logo; possui a capacidade de aumentar o seu desempenho sob
carga, particularidade conhecida como Escalabilidade. Para que tudo isto seja possivel, o
SD possui dentre as suas caracteristicas a possibilidade de execucdo paralela de tarefas,
sendo este 0 aspecto do Paralelismo. Ao mesmo tempo, mediante a Concorréncia, tolera
que estas tarefas sejam executas simultaneamente. E interessante mencionar que um SD é
mais do que uma rede com servidores espalhados pela mesma, este envolve certas
peculiaridades que ndo aparecem numa rede comum, caracteristica da Transparéncia,
como privar o usuério de qualquer conhecimento sobre como o ambiente executa as suas

tarefas (UNESP, 2013). A Figura 1 demonstra um exemplo desta arquitetura.

Figura 1

Fonte: Joel Corréa

Desta forma, com os principios do SD, o principal foco da aplicacdo desenvolvida
neste relatorio é auxiliar as cantinas de faculdades e escolas a realizarem vendas de seus

produtos com o modelo pré-pago.

2. PROBLEMA

Um aspecto importante do desenvolvimento de um SD, permeada pela
Heterogeneidade, € de permitir a execucdo do codigo da aplicagdo em diferentes
arquiteturas. Para isto se recorre a um Middleware, sendo este uma camada de software que
atua como uma ponte entre um sistema operacional ou banco de dados e aplicativos,
especialmente em uma rede. A Figura 2 demonstra de forma esquematica este
funcionamento (CORREA, 2014).

“ Serverz
| Server
| Client Middleware Server
e g

Server

Figura 2

Fonte: Joel Corréa

Outro ponto fundamental é o Tratamento de Falhas, como na tentativa de envio de
um pedido e 0 ndo recebimento do mesmo pelo servidor, podendo ser repetido 0 processo
um determinado namero de vezes sem qualquer nova interacdo por parte do usuario,
havendo uma tolerancia, mascarando e recuperando estes dados, e caso ndo obtenha sucesso
sera enviado um feedback em forma de mensagem para que 0 usuario possa ter uma tomada
de deciséo.

Um dos desafios deste sistema tange o aspecto da Seguranca, sendo necessarios
manter a integridade dos dados, a disponibilidade do sistema bem como garantir a
confidencialidade a partir da autenticacdo dos usuarios.

Pensando em garantir a qualidade deste sistema, mediante a sua natureza
assincrona, este ira trabalhar apenas com o protocolo TCP, ou seja; em nivel confiavel de

servigo e com garantia de ordem de pacotes (RODRIGUEZ, 2016).

3. SOLUCAO DA CANTINA MONETIZADA

Para o desenvolvimento da Cantina Monetizada foi criada uma camada para a
autorizacdo de acesso a cada login, verificacdo de saldo e a sua devida consulta junto a base
de usuérios pré-registrados e seus receptivos valores armazenados. Com isto, as questdes
referentes a Seguranca, mesmo que num formato simplificado, foram contempladas.

Foram criados dois projetos a parte, 0 primeiro representa o0s possiveis clientes que
poderiam se conectar no Servidor e o outro representa o Servidor em si, o qual é responsavel
por fazer as autenticagBes dos usuarios juntamente com todas as logicas de negdcio
envolvidas.

No backend foi utilizada uma classe chamada UsersBuilder, sendo esta responsavel
por criar 0s objetos que representam cada usuario e guarda-los em um array. Desta forma,
foi possivel obter os usuarios pré-cadastrados para conectar no sistema. Foi criada outra
classe chamada UsersThread, a qual é responsavel por criar Threads representando 0s
clientes que eventualmente iriam se conectar, de forma simultanea, no sistema (CAELUM,
2017).

No frontend, no que tange o desenvolvimento ao mesmo tempo em que Se visou a
simplificacdo da aplicag&o, foi criada uma classe responsavel por instanciar clientes e para
se conectar com o backend.

Quanto ao funcionamento do sistema, quando um cliente se conecta com o Servidor
sera exibido um menu com as seguintes opc¢des de escolha: verificar o saldo atual, realizar
pedido, verificar pedidos na fila de atendimento ou sair. A Figura 3 exibe esta etapa de
funcionamento do sistema.

Figura 3

S

Connected to Serwver!
Begistration:

1234

Fassword:

1

Choose one of the options below:
1- Check balance

Z— Order dish

3- Show finished orders

4- Exit

Fonte: criada pelos autores do projeto

No momento em que a op¢do de realizar pedido for selecionada, o usuario devera
informar o valor da refeicdo que deseja. Quando isto ocorre, a ldgica de verificagdo de saldo
do cliente em relacdo ao valor do pedido € ativada. Isto ird determinar se a resposta do
servidor sera validar a solicitacdo, emitindo uma confirmacdo de que o pedido foi
adicionado a fila, ou informar que o saldo é insuficiente.

4. CONSIDERACOES FINAIS

Uma dificuldade encontrada se deu na comunicacgéo entre 0s processos envolvidos,
mediante a natureza descentralizada da aplicacdo, necessitando inclusive de atengéo
especial para a sua codificagéo.

A parte referente a protocolos de comunicagdo, o TCP, ocorreu de forma fluida,
uma vez em que todo o sistema foi executado dentro do mesmo ambiente ideal e seguro,
sem apresentar qualquer interferéncia externa.

Como a versdo inicial do sistema foi puramente desenvolvida em Java Deskop, néo
houve dificuldades quanto a Heterogeneidade, porém; para a futura versdo e aplicacdo em
caso real este é aspecto fundamental afim de permitir que equipamentos de diferentes
fabricantes, versdes e sistemas operacionais possam integrar a Cantina Monetizada. Neste
caso, serd imprescindivel o uso de um Middleware principalmente pelo fato de diversas

cantinas possuirem sistemas adversos.

REFERENCIAS

CAELUM. Programacao Concorrente e Threads. 2017.
<https://www.caelum.com.br/apostila-java-orientacao-objetos/programacao-concorrente-e-
threads/>. Acessado em: 04/07/2017

CORREA, Joel. Sistemas Distribuidos. 2014. <http://slides.com/joelcorrea/sistemas-
distribuidos#/>. Acessado em: 04/07/2017

RODRIGUEZ, Noemi. Comunicacao entre Processos. PUC-Rio. 2016.
<http://www.inf.puc-rio.br/~noemi/sd-10/aula2.pdf>. Acessado em: 04/07/2017

UNESP. Sistemas Distribuidos. Departament. de Ciéncias de Computacao e Estatistica.
2013. <https://www.dcce.ibilce.unesp.br/~aleardo/cursos/fsc/capl3.php>. Acessado em:
04/07/2017

