
YONATHAN STEIN Trabalho Vendas - Módulo II

SENAC-RS – 2015/2 Banco de Dados II (6540) - Rafael Gastão

1 / 2

Faça um procedimento, considerando o modelo de ‘cliente’, ‘pedido’, ‘produto’
e ‘movimento’, de forma que:

a) Não permita excluir um produto que já tenha sido pedido;
b) Ao inserir um novo produto o campo ‘nome’ precisa de valor;

OBS.: Defina a quantidade de parâmetros necessários para tratar estas regras.

a)

CREATE OR REPLACE FUNCTION

fn_deletar_produto(_NOME char (30)) RETURNS VOID AS $$

DECLARE

_EXISTE char (30);

BEGIN

_EXISTE = (select nome from produto

 where lower(nome) = lower(_NOME));

IF _EXISTE IS NOT NULL THEN

 PERFORM * from pedido, movimento, produto

 where pedido.nro_ped = movimento.nro_ped

 and movimento.cod_prod = produto.cod_prod

 and lower(produto.nome) = lower(_NOME);

 IF FOUND THEN

RAISE NOTICE 'Não foi possível deletar pois o produto: "%" possui

pedido(s).', upper(_NOME);

 ELSE

 delete from produto

 where lower(produto.nome) = lower(_NOME);

 RAISE NOTICE 'Produto "%" deletado com sucesso!', upper(_NOME) ;

 END IF;

ELSE

RAISE EXCEPTION 'Produto "%" não encontrado!', upper(_NOME);

END IF;

RETURN;

END;

$$

LANGUAGE PLpgSQL;

YONATHAN STEIN Trabalho Vendas - Módulo II

SENAC-RS – 2015/2 Banco de Dados II (6540) - Rafael Gastão

2 / 2

b)

CREATE OR REPLACE FUNCTION

fn_insere_produto(_COD int, _NOME char (30), _PRECO float, _CAT char (20))

RETURNS VOID AS $$

BEGIN

IF _NOME != '' THEN

insert into produto values (_COD, _NOME, _PRECO, _CAT);

RAISE NOTICE 'Produto inserido com sucesso!';

ELSE

RAISE EXCEPTION 'NOME não preenchido!';

END IF;

RETURN;

END;

$$

LANGUAGE PLpgSQL;

