
YONATHAN STEIN Triggers – T3

SENAC-RS – 2015/2 Banco de Dados II (6540) - Rafael Gastão

1 / 4

1. Tarefa:

a. Verificar se tr_sal_emp.sal é inferior ou igual ao maior salário permitido para

um funcionário (tr_emp.maxSal);

b. Garantir que a data de início de um novo salário não esteja entre qualquer

outro período de salário para o empregado;

c. Se for uma inclusão com data de início posterior a dezembro de 2010 a data

de fim NÃO pode ser preenchida; Porém, se a data de início informada for

inferior a Janeiro de 2012 e o empregado possuir os códigos 10, 20 ou 30

então a data de fim deverá ser igual a 31/12/2012.

d. Preencher automaticamente os campos (dependendo da operação):

 –usu_inc / usu_atu := current_user

 –dth_inc / dth_atu:= current_timestamp

e. Quando um funcionário receber aumento, ou seja, um novo registro é inserido

na tabela TR_SAL_EMP, automaticamente um registro deve ser incluído na

tabela TR_PROMOVIDO (ou atualizado, se já existir).

OBS.: A tabela TR_PROMOVIDO possui a quantidade de empregados que

receberam aumento em um determinado ano/mês. Esse ano/mês é obtido da data

de inclusão da tabela TR_SAL_EMP.

2. Realizar uma auditoria para as operações efetuadas na tabela TR_EMP, para

isso:

a. Criar tabela de auditoria composta, no mínimo, dos seguintes atributos:

 Operação realizada

 Usuário que efetuou a operação

 Data e hora da ocorrência da operação

 MaxSal ANTES e DEPOIS quando de alteração da linha

b. Criar trigger para popular a tabela de auditoria conforme são realizadas as

operações na tabela TR_EMP;

YONATHAN STEIN Triggers – T3

SENAC-RS – 2015/2 Banco de Dados II (6540) - Rafael Gastão

2 / 4

3. Definição das Tabelas:

OBS.: Em .sql no mesmo diretório.

4. ER das Tabelas:

YONATHAN STEIN Triggers – T3

SENAC-RS – 2015/2 Banco de Dados II (6540) - Rafael Gastão

3 / 4

1.
CREATE OR REPLACE FUNCTION

fn_01() RETURNS TRIGGER AS $$

DECLARE

_MAX_SAL decimal(9,2);

_DATA_FIM date;

_EXISTE int;

_TOTAL int;

BEGIN

_MAX_SAL = (select maxSal

 from tr_emp

 where idEmp = NEW.idEmp);

_DATA_FIM = (select dtFim

 from tr_sal_emp

 where idEmp = NEW.idEmp

 order by dtFim desc

 limit 1);

_EXISTE = (select anoMes

 from tr_promovido, tr_sal_emp

 where anoMes = cast(to_char(dth_inc, 'YYYYMM') as int)

 limit 1);

IF NEW.sal > _MAX_SAL THEN

 RAISE EXCEPTION 'Salário Superior ao Permitido pelo Sistema';

ELSEIF TG_OP = 'INSERT' AND NEW.dtIni < DATA_FIM THEN

 RAISE EXCEPTION 'Data de Início entre a data de outro Salário';

END IF;

IF TG_OP = 'INSERT' AND (to_char(NEW.dtIni, 'YYYY-MM')) < '2012-01' AND NEW.idEmp IN (10,20,30) THEN

 NEW.dtFim = '2012-12-31';

ELSEIF TG_OP = 'INSERT' AND (to_char(NEW.dtIni, 'YYYY-MM')) > '2010-12' THEN

 NEW.dtFim = null;

END IF;

IF TG_OP = 'INSERT' THEN

 NEW.usu_inc = CURRENT_USER;

 NEW.dth_inc = CURRENT_TIMESTAMP;

 NEW.usu_atu = CURRENT_USER;

 NEW.dth_atu = CURRENT_TIMESTAMP;

ELSEIF TG_OP = 'UPDATE' THEN

 NEW.usu_atu = CURRENT_USER;

 NEW.dth_atu = CURRENT_TIMESTAMP;

END IF;

GET DIAGNOSTICS _TOTAL = ROW_COUNT;

IF TG_OP = 'INSERT' THEN

IF _EXISTE IS NULL THEN

 insert into tr_promovido (anoMes, qtd) values (cast(to_char(now(), 'YYYYMM') as int), _TOTAL);

 ELSE

 update tr_promovido set qtd = qtd + 1 where _EXISTE = anoMes;

 END IF;

END IF;

RETURN NEW;

END;

$$ LANGUAGE PLpgSQL;

-- TRIGGER:

CREATE TRIGGER tg_01

BEFORE INSERT OR UPDATE OR DELETE ON tr_sal_emp

FOR EACH ROW EXECUTE PROCEDURE fn_01();

YONATHAN STEIN Triggers – T3

SENAC-RS – 2015/2 Banco de Dados II (6540) - Rafael Gastão

4 / 4

2.

CREATE OR REPLACE FUNCTION

fn_02_log() RETURNS TRIGGER AS $$

BEGIN

IF TG_OP = 'UPDATE' THEN

 insert into tr_emp_log (operacao, usuario, dataHora, maxSalAnt, maxSalDep)

 values (TG_OP, CURRENT_USER, now(), OLD.maxSal, NEW.maxSal);

ELSEIF TG_OP = 'INSERT' THEN

 insert into tr_emp_log (operacao, usuario, dataHora, maxSalDep)

 values (TG_OP, CURRENT_USER, now(), NEW.maxSal);

ELSEIF TG_OP = 'DELETE' THEN

 insert into tr_emp_log (operacao, usuario, dataHora, maxSalAnt)

 values (TG_OP, CURRENT_USER, now(), OLD.maxSal);

END IF;

RETURN NEW;

END;

$$ LANGUAGE PLpgSQL;

-- TRIGGER:

CREATE TRIGGER tg_02_log

AFTER INSERT OR UPDATE OR DELETE ON tr_emp

FOR EACH ROW EXECUTE PROCEDURE fn_02_log();

