
YONATHAN STEIN, ALEXIS MATURANO,
CALVIN CUSTÓDIO, THIAGO DUARTE

EXERCÍCIO – 3
 Padrões de Projeto

SENAC-RS – 2015/2 Engenharia de Software II (5052) - Luciano Zanuz

1 / 8

Padrão de Projeto: Template Method

Aplicação:

Define os passos de um algoritmo e permite que a implementação de um ou mais

desses passos seja fornecida por subclasses. O Template Method protege o algoritmo e

fornece métodos abstratos para que as subclasses possam implementá-los.

Benefícios:

Permite reutilizar código sem perder o controle dos nossos algoritmos.

Diagrama de classes:

No diagrama de classe acima temos a classe AbstractClass contendo o método

templateMethod() que possui o algoritmo e que define os métodos primitiveOperation1() e

primitiveOperation2() que são abstratos. As classes concretas Concrete1 e Concrete2

implementam os métodos abstratos que serão chamados quando templateMethod()

precisar delas. Vale salientar que o método templateMethod() é final, ou seja, ele não pode

ser sobrescrito, seu algoritmo não pode ser mexido. Já os métodos primitiveOperation1() e

primitiveOperation2() podem ser sobrescritos. Além disso, ainda poderíamos ter um método

concreto ou ainda um método final que não poderia ser sobrescrito e seria utilizado no

algoritmo do templateMethod(). Isso ficará mais claro no exemplo de implementação

abaixo.

YONATHAN STEIN, ALEXIS MATURANO,
CALVIN CUSTÓDIO, THIAGO DUARTE

EXERCÍCIO – 3
 Padrões de Projeto

SENAC-RS – 2015/2 Engenharia de Software II (5052) - Luciano Zanuz

2 / 8

Exemplo de Implementação em Java:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 public abstract class Treinos {

 final void treinoDiario() {

 preparoFisico();

 jogoTreino();

 treinoTatico();

 }

 abstract void preparoFisico();

 abstract void jogoTreino();

 final void treinoTatico() {

 System.out.println("Treino Tatico");

 }

}

1

2

3

4

5

6

7

8

9

10

 class TreinoNoMeioDaTemporada extends Treinos {

 void preparoFisico() {

 System.out.println("Preparo Fisico Intenso.");

 }

 void jogoTreino() {

 System.out.println("Jogo Treino com Equipe Reserva.");

 }

}

1

2

3

4

5

6

7

8

9

10

11

 class TreinoNoInicioDaTemporada extends Treinos {

 void preparoFisico() {

 System.out.println("Preparo Fisico Leve.");

 }

 void jogoTreino() {

 System.out.println("Jogo Treino com Equipe Junior.");

 }

}

YONATHAN STEIN, ALEXIS MATURANO,
CALVIN CUSTÓDIO, THIAGO DUARTE

EXERCÍCIO – 3
 Padrões de Projeto

SENAC-RS – 2015/2 Engenharia de Software II (5052) - Luciano Zanuz

3 / 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

 public class App {

 public static void main(String[] args) {

 System.out.println("\n\tTreino no início da Temporada:\n");

 Treinos t1 = new TreinoNoInicioDaTemporada();

 t1.treinoDiario();

 System.out.println("\n\tTreino no meio da Temporada:\n");

 Treinos t2 = new TreinoNoMeioDaTemporada();

 t2.treinoDiario();

 System.out.println("\n\tTreino no final da Temporada:\n");

 Treinos t3 = new TreinoNoFinalDaTemporada();

 t3.treinoDiario();

 }

}

Saída no Console em Java:

 Treino no início da Temporada:

Preparo Fisico Leve.

Jogo Treino com Equipe Junior.

Treino Tatico

 Treino no meio da Temporada:

Preparo Fisico Intenso.

Jogo Treino com Equipe Reserva.

Treino Tatico

 Treino no final da Temporada:

Preparo Fisico Moderado.

Jogo Treino com Equipe Oficial.

Treino Tatico

YONATHAN STEIN, ALEXIS MATURANO,
CALVIN CUSTÓDIO, THIAGO DUARTE

EXERCÍCIO – 3
 Padrões de Projeto

SENAC-RS – 2015/2 Engenharia de Software II (5052) - Luciano Zanuz

4 / 8

No exemplo acima temos a classe principal Treinos que tem o método treinoDiario()

que tem como principal finalidade ser um algoritmo a ser seguido por todas as outras

classes que estenderem essa classe. Este método é final e não pode ser alterado, todos

os treinos devem seguir estas etapas. No entanto, as classes TreinoNoMeioDaTemporada

e TreinoNoInicioDaTemporada implementam os métodos abstratos preparoFisico() e

jogotreino(). Ambos estes métodos podem ser alterados dependendo se o treino está sendo

feito no inicio de uma temporada ou no meio dela. Assim cada método é implementado por

sua classe especifica, mas sempre seguindo o algoritmo. O método treinoTatico() é definido

pelo algoritmo e pela classe base, este método é concreto e final, portanto não pode ser

alterado e é seguido por todos os treinamentos. Nada impede também de termos métodos

concretos que podem ser sobrescritos nas subclasses ou que simplesmente podem ser

usados da sua classe base.

Utilização do Template Method nas API’s Java

O Padrão Template Method também é utilizado nas API’s do Java, como na API

Swing onde a classe JFrame define o método paint() como abstrato para ser implementado

nas subclasses que estendem JFrame. A substituição do conteúdo de paint() permite que

você se conecte ao algoritmo de JFrame para exibir sua área da tela e incorporar a sua

própria saída gráfica ao JFrame. Os Applets também utilizam o padrão Template Method

através dos métodos init(), start(), stop(), destroy(), e outros.

Considerações:

O Padrão Template Method nos permite reutilizar código sem perder o controle do

nossos algoritmos. No Template Method são definidos passos de um algoritmo, permitindo

que alguns desses passos sejam implementados por subclasses. Na classe abstrata temos

métodos abstratos, concretos e finais. O Template Method é bastante utilizado inclusive na

API Java, como pudemos constatar.

YONATHAN STEIN, ALEXIS MATURANO,
CALVIN CUSTÓDIO, THIAGO DUARTE

EXERCÍCIO – 3
 Padrões de Projeto

SENAC-RS – 2015/2 Engenharia de Software II (5052) - Luciano Zanuz

5 / 8

Padrão de Projeto: Mediator

Aplicação:

Permite criar um objeto que age como mediador, controlando a interação entre um

conjunto de objetos. Diminui o acoplamento entre os objetos. É aplicado quando existe um

grande número de objetos que se comunicam entre si de maneira bem definida, mas de

forma complexa.

Diagrama de classes:

Considerações:

Hierarquia de subclasses é limitada apenas a classe Mediator. Substitui o

relacionamento de objetos de * para muitos para um para *. Abstração da interação entre

os objetos. Centralização do comportamento.

YONATHAN STEIN, ALEXIS MATURANO,
CALVIN CUSTÓDIO, THIAGO DUARTE

EXERCÍCIO – 3
 Padrões de Projeto

SENAC-RS – 2015/2 Engenharia de Software II (5052) - Luciano Zanuz

6 / 8

Exemplo de Implementação em Java:

1

2

3

4

5

6

7

8

9

10

11

12

13

 public abstract class Colleague {

 protected Mediator mediator;

 public Colleague(Mediator m) {

 mediator = m;

 }

 public void enviarMensagem(String mensagem) {

 mediator.enviar(mensagem, this);

 }

 public abstract void receberMensagem(String mensagem);

}

1

2

3

4

5

6

7

8

9

10

11

 public class IOSColleague extends Colleague {

 public IOSColleague(Mediator m) {

 super(m);

 }

 @Override

 public void receberMensagem(String mensagem) {

 System.out.println("iOs recebeu: " + mensagem);

 }

}

1

2

3

4

5

6

7

8

9

10

11

 public class AndroidColleague extends Colleague {

 public AndroidColleague(Mediator m) {

 super(m);

 }

 @Override

 public void receberMensagem(String mensagem) {

 System.out.println("Android recebeu: " + mensagem);

 }

}

YONATHAN STEIN, ALEXIS MATURANO,
CALVIN CUSTÓDIO, THIAGO DUARTE

EXERCÍCIO – 3
 Padrões de Projeto

SENAC-RS – 2015/2 Engenharia de Software II (5052) - Luciano Zanuz

7 / 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

 public class MensagemMediator implements Mediator {

 protected ArrayList<Colleague> contatos;

 public MensagemMediator() {

 contatos = new ArrayList<Colleague>();

 }

 public void adicionarColleague(Colleague colleague) {

 contatos.add(colleague);

 }

 @Override

 public void enviar(String mensagem, Colleague colleague) {

 for (Colleague contato : contatos) {

 if (contato != colleague) {

 definirProtocolo(contato);

 contato.receberMensagem(mensagem);

 }

 }

 }

 private void definirProtocolo(Colleague contato) {

 if (contato instanceof IOSColleague) {

 System.out.println("Protocolo iOS");

 } else if (contato instanceof AndroidColleague) {

 System.out.println("Protocolo Android");

 } else if (contato instanceof SymbianColleague) {

 System.out.println("Protocolo Symbian");

 }

 }

}

1

2

3

4

5

 public interface Mediator {

 void enviar(String mensagem, Colleague colleague);

}

YONATHAN STEIN, ALEXIS MATURANO,
CALVIN CUSTÓDIO, THIAGO DUARTE

EXERCÍCIO – 3
 Padrões de Projeto

SENAC-RS – 2015/2 Engenharia de Software II (5052) - Luciano Zanuz

8 / 8

Tools:

 http://hilite.me/

Bibliografia:

 http://www.devmedia.com.br/padrao-de-projeto-template-method-em-java/26656

 http://www.devmedia.com.br/padrao-mediator-curso-padroes-de-projeto-com-c-26/27407

 https://sourcemaking.com/design_patterns/mediator

 https://sourcemaking.com/design_patterns/template_method

Bibliografia Complementar:

 Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra. Head First Design Patterns. O'Reilly

Media, 2004.

 Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison Wesley, 2010.

http://hilite.me/
http://www.devmedia.com.br/padrao-de-projeto-template-method-em-java/26656
http://www.devmedia.com.br/padrao-mediator-curso-padroes-de-projeto-com-c-26/27407
https://sourcemaking.com/design_patterns/mediator
https://sourcemaking.com/design_patterns/template_method

