YONATHAN STEIN, ALEXIS MATURANO, EXERCICIO - 3

CALVIN CUSTODIO, THIAGO DUARTE Padrdes de Projeto

SENAC-RS - 2015/2 Engenharia de Software Il (5052) - Luciano Zanuz

Padrao de Projeto: Template Method

Aplicacgao:

Define os passos de um algoritmo e permite que a implementagdo de um ou mais
desses passos seja fornecida por subclasses. O Template Method protege o algoritmo e

fornece métodos abstratos para que as subclasses possam implementa-los.

Beneficios:

Permite reutilizar codigo sem perder o controle dos nossos algoritmos.

Diagrama de classes:

«(Classe Javas
() AbstractClass

@ templateMethod ()
& primitiveOperation1 |)
& primitiveOperation2 |)

«(Classe Javas «Classe Javas
{3 Concretel (3 Concrete2

@, primitiveOperationl ()

. i @, primitiveCperation ()
@, primitiveOperation2 ()

@, primitiveCperation2 ()

No diagrama de classe acima temos a classe AbstractClass contendo o método
templateMethod() que possui o0 algoritmo e que define os métodos primitiveOperation1() e
primitiveOperation2() que sao abstratos. As classes concretas Concrete1 e Concrete2
implementam os métodos abstratos que serdo chamados quando templateMethod()
precisar delas. Vale salientar que o método templateMethod() € final, ou seja, ele ndo pode
ser sobrescrito, seu algoritmo ndo pode ser mexido. Ja os métodos primitiveOperation1() e
primitiveOperation2() podem ser sobrescritos. Além disso, ainda poderiamos ter um método
concreto ou ainda um método final que nao poderia ser sobrescrito e seria utilizado no
algoritmo do templateMethod(). Isso ficara mais claro no exemplo de implementacao

abaixo.

1/8

YONATHAN STEIN, ALEXIS MATURANO, EXERCICIO - 3

CALVIN CUSTODIO, THIAGO DUARTE Padrdes de Projeto

SENAC-RS - 2015/2 Engenharia de Software Il (5052) - Luciano Zanuz

Exemplo de Implementagao em Java:

e e e e
N OO b D O D0 WD e

O 00 1 o U W DN

[y
o

=
Do 0®do g WwN e

public abstract class Treinos ({

final void treinoDiario () {
preparoFisico () ;
jogoTreino () ;
treinoTatico () ;

abstract void preparoFisico () ;
abstract void jogoTreino();

final void treinoTatico () {
System.out.println ("Treino Tatico");

class TreinoNoMeioDaTemporada extends Treinos {

void preparoFisico () {
System.out.println ("Preparo Fisico Intenso.");

}

void jogoTreino () {
System.out.println ("Jogo Treino com Equipe Reserva.");

class TreinoNoInicioDaTemporada extends Treinos {
void preparoFisico () {
System.out.println ("Preparo Fisico Leve.");
}
void jogoTreino () {
System.out.println ("Jogo Treino com Equipe Junior.");

}

}

2/8

YONATHAN STEIN, ALEXIS MATURANO, EXERCICIO - 3

CALVIN CUSTODIO, THIAGO DUARTE Padroes de Projeto
SENAC-RS - 2015/2 Engenharia de Software Il (5052) - Luciano Zanuz
1 public class App {

2

3 public static void main (String[] args) {

4

5 System.out.println ("\n\tTreino no inicio da Temporada:\n");

6 Treinos tl = new TreinoNoInicioDaTemporada () ;

7 tl.treinoDiario();

8

9 System.out.println ("\n\tTreino no meio da Temporada:\n");

10 Treinos t2 = new TreinoNoMeioDaTemporada () ;

11 t2.treinoDiario () ;

12

13 System.out.println ("\n\tTreino no final da Temporada:\n");

14 Treinos t3 = new TreinoNoFinalDaTemporada () ;

15 t3.treinoDiario() ;

16 }

17

18 1}

Saida no Console em Java:

Treino no inicio da Temporada:
Preparo Fisico Leve.
Jogo Treino com Equipe Junior.
Treino Tatico

Treino no meio da Temporada:
Preparo Fisico Intenso.
Jogo Treino com Equipe Reserva.
Treino Tatico

Treino no final da Temporada:
Preparo Fisico Moderado.

Jogo Treino com Equipe Oficial.
Treino Tatico

3/8

YONATHAN STEIN, ALEXIS MATURANO, EXERCICIO - 3

CALVIN CUSTODIO, THIAGO DUARTE Padrdes de Projeto

SENAC-RS - 2015/2 Engenharia de Software Il (5052) - Luciano Zanuz

No exemplo acima temos a classe principal Treinos que tem o método treinoDiario()
que tem como principal finalidade ser um algoritmo a ser seguido por todas as outras
classes que estenderem essa classe. Este método é final e nao pode ser alterado, todos
os treinos devem seguir estas etapas. No entanto, as classes TreinoNoMeioDaTemporada
e TreinoNolnicioDaTemporada implementam os métodos abstratos preparoFisico() e
jogotreino(). Ambos estes métodos podem ser alterados dependendo se o treino esta sendo
feito no inicio de uma temporada ou no meio dela. Assim cada método é implementado por
sua classe especifica, mas sempre seguindo o algoritmo. O método treinoTatico() é definido
pelo algoritmo e pela classe base, este método é concreto e final, portanto ndo pode ser
alterado e é seguido por todos os treinamentos. Nada impede também de termos métodos
concretos que podem ser sobrescritos nas subclasses ou que simplesmente podem ser

usados da sua classe base.

Utilizacao do Template Method nas API’s Java

O Padrao Template Method também é utilizado nas API's do Java, como na API
Swing onde a classe JFrame define 0 método paint() como abstrato para ser implementado
nas subclasses que estendem JFrame. A substituigdo do conteudo de paint() permite que
vocé se conecte ao algoritmo de JFrame para exibir sua area da tela e incorporar a sua
prépria saida grafica ao JFrame. Os Applets também utilizam o padrao Template Method

através dos métodos init(), start(), stop(), destroy(), e outros.

Consideragoes:

O Padrao Template Method nos permite reutilizar codigo sem perder o controle do
nossos algoritmos. No Template Method sao definidos passos de um algoritmo, permitindo
que alguns desses passos sejam implementados por subclasses. Na classe abstrata temos
métodos abstratos, concretos e finais. O Template Method é bastante utilizado inclusive na

API Java, como pudemos constatar.

4/8

YONATHAN STEIN, ALEXIS MATURANO, EXERCICIO - 3

CALVIN CUSTODIO, THIAGO DUARTE Padrdes de Projeto

SENAC-RS - 2015/2 Engenharia de Software Il (5052) - Luciano Zanuz

Padrao de Projeto: Mediator

Aplicagao:

Permite criar um objeto que age como mediador, controlando a interagdo entre um
conjunto de objetos. Diminui o acoplamento entre os objetos. E aplicado quando existe um
grande numero de objetos que se comunicam entre si de maneira bem definida, mas de

forma complexa.

Diagrama de classes:

Mediator mediatar Colleague
-
ConcreteMediator ConcreteColleague ConcreteColleague2

N

Consideragoes:

Hierarquia de subclasses € limitada apenas a classe Mediator. Substitui o
relacionamento de objetos de * para muitos para um para *. Abstragédo da interagéo entre

os objetos. Centralizagdo do comportamento.

5/8

YONATHAN STEIN, ALEXIS MATURANO, EXERCICIO - 3

CALVIN CUSTODIO, THIAGO DUARTE Padrdes de Projeto

SENAC-RS - 2015/2 Engenharia de Software Il (5052) - Luciano Zanuz

Exemplo de Implementagao em Java:

1 public abstract class Colleague ({

2 protected Mediator mediator;

3

4 public Colleague (Mediator m) {

5 mediator = m;

6 }

7

8 public void enviarMensagem(String mensagem) {
9 mediator.enviar (mensagem, this);

10 }

11

12 public abstract void receberMensagem(String mensagem) ;
13}

1 public class IOSColleague extends Colleague {

2

3 public IOSColleague (Mediator m) {

4 super (m) ;

5 }

6

7 @Override

8 public void receberMensagem (String mensagem) {
9 System.out.println("iOs recebeu: " + mensagem) ;
10 }

11}

1 public class AndroidColleague extends Colleague {
2

3 public AndroidColleague (Mediator m) {

4 super (m) ;

5 }

6

7 @QOverride

8 public void receberMensagem (String mensagem) {
9 System.out.println ("Android recebeu: " + mensagem) ;
10 }

11}

6/8

YONATHAN STEIN, ALEXIS MATURANO, EXERCICIO - 3

CALVIN CUSTODIO, THIAGO DUARTE Padroes de Projeto
SENAC-RS - 2015/2 Engenharia de Software Il (5052) - Luciano Zanuz
1 public class MensagemMediator implements Mediator {

2

3 protected ArrayList<Colleague> contatos;

4

5 public MensagemMediator () ({

6 contatos = new ArrayList<Colleague>();

7 }

8

9 public void adicionarColleague (Colleague colleague) {
10 contatos.add (colleague) ;

11 }

12

13 @Override

14 public void enviar (String mensagem, Colleague colleague) {
15 for (Colleague contato : contatos) {

16 if (contato != colleague) {

17 definirProtocolo (contato) ;

18 contato.receberMensagem (mensagem) ;

19 }

20 }

21 }

22

23 private void definirProtocolo (Colleague contato) {

24 if (contato instanceof I0SColleague) {

25 System.out.println ("Protocolo i0S");

26 } else if (contato instanceof AndroidColleague) {
27 System.out.println ("Protocolo Android");

28 } else if (contato instanceof SymbianColleague) {
29 System.out.println ("Protocolo Symbian");

30 }

31 }

32

33}

1 public interface Mediator {

2

3 void enviar (String mensagem, Colleague colleague);
4

5 '}

7/8

YONATHAN STEIN, ALEXIS MATURANO, EXERCICIO - 3

CALVIN CUSTODIO, THIAGO DUARTE Padroes de Projeto
SENAC-RS - 2015/2 Engenharia de Software Il (5052) - Luciano Zanuz
Tools:

e http://hilite.me/

Bibliografia:

e http://www.devmedia.com.br/padrao-de-projeto-template-method-em-java/26656

e http://www.devmedia.com.br/padrao-mediator-curso-padroes-de-projeto-com-c-26/27407

e https://sourcemaking.com/design patterns/mediator

e https://sourcemaking.com/design patterns/template _method

Bibliografia Complementar:

e Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra. Head First Design Patterns. O'Reilly
Media, 2004.

e Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 2010.

8/8

http://hilite.me/
http://www.devmedia.com.br/padrao-de-projeto-template-method-em-java/26656
http://www.devmedia.com.br/padrao-mediator-curso-padroes-de-projeto-com-c-26/27407
https://sourcemaking.com/design_patterns/mediator
https://sourcemaking.com/design_patterns/template_method

