METODOLOGIA DE DESENVOLVIMENTO DE SISTEMAS

Uma metodologia de desenvolvimento de software é um conjunto de atividades que
auxiliam a producdo de software. O resultado dessas atividades € um produto que reflete a
forma como todo o processo foi conduzido. Pode ser caracterizada como um framework de
processos organizacionais que, se usados adequadamente, garantem o sucesso da area de
Engenharia de Software.

Conforme CARVALHO (2001), “uma metodologia de desenvolvimento detalha as
atividades do ciclo de vida, especificando um conjunto Unico e coerente de principios,
métodos, linguagem de representacdo, normas, procedimentos e documentacdo, que
permitem ao desenvolvedor de software implementar sem ambiguidade as especificacfes
advindas das fases do ciclo de vida do software”.

Embora tenham sido criadas varias metodologias para o desenvolvimento de
software, existem atividades fundamentais comuns a todas elas [SOMMERVILLE, 2003]:

e Especificacdo: defini¢do das funcionalidades e demais caracteristicas do produto.

e Projeto e implementagdo: o software é produzido de acordo com as especificacdes.
Nesta fase sdo propostos modelos por meio de diagramas que serdo implementados
em alguma linguagem de programacao.

e Validacdo: atividades de revisdo e testes visando a assegurar que 0s requisitos sejam
cumpridos.

e Evolucdo: atividades de manutencédo, por exemplo, para adaptar o software a novas
necessidades do cliente.

Um ambiente de desenvolvimento de software de qualidade se inicia com uma
solida definicdo do processo que inclui atividades usualmente definidas como fases, tarefas,
passos, e 0 que sera produzido por cada uma dessas atividades. O processo também
especifica a ordenacdo das atividades, que podem ser seqlienciais, concorrentes ou em
paralelo, e todas reunidas definem a base da execugdo do desenvolvimento.

Muitas organizagdes erradamente confundem o processo com a utilizacdo de certas
ferramentas de desenvolvimento [COSTA, 1999, p. 28-30].

Em particular, as pequenas e médias organizacfes ndo possuem recursos suficientes
para adotar o uso de metodologias pesadas e, por essa razdo, normalmente nao utilizam
nenhum processo. O resultado dessa falta de sistematizacdo na producdo de software é a
baixa qualidade do produto final, além de dificultar a entrega do software nos prazos e
custos predefinidos e inviabilizar a futura evolucéo do software.

METODOLOGIAS EXISTENTES

O numero de metodologias propostas para o desenvolvimento de software atingiu
um numero demasiado elevado, o que torna virtualmente impossivel a sua apresentacdo. Por



isso, enumeramos algumas metodologias, estruturadas e orientadas a objeto, conhecidas que
maior relevancia e divulgacdo tiveram. Para além destas, existiram outras contribuicdes
importantes que ndo estdo incluidas aqui por ndo apresentarem uma perspectiva integrada
de todo o processo de desenvolvimento, mas apenas sugerirem anotacdes ou técnicas de
modelagem.

1 EXTREME PROGRAMMING

A Extreme Programming (XP) é uma metodologia agil para equipes pequenas e médias que
desenvolvem software baseado em requisitos vagos e que sao modificados rapidamente.
Entre as principais caracteristicas que a diferencia das outras metodologias sdo:

e Feedback constante
e Abordagem incremental
e A comunicagdo entre as pessoas € encorajada

A finalidade da comunicagdo é manter o melhor relacionamento possivel entre
clientes, desenvolvedores e gerentes, preferindo conversas pessoais a outros meios de
comunicacao.

A prética do feedback constante significa que o programador tera informacdes
constantes sobre o cddigo e o cliente. A informacdo do cddigo é dada pelos testes
constantes, que indicam os erros tanto individuais quanto do software integrado. Em relacao
ao cliente, o feedback constante significa que ele tera frequentemente uma parte do software
totalmente funcional para avaliar. Com isso, 0 cliente constantemente sugerird novas
caracteristicas e informagfes aos desenvolvedores. Desta forma, a tendéncia é que o
produto final esteja de acordo com as expectativas reais do cliente.

A XP baseia-se em 12 préticas descritas a seguir:

1 - Planejamento: baseia-se em requisitos atuais reais para desenvolvimento de software,
ndo em possiveis requisitos futuros. A XP procura evitar os problemas de relacionamento
entre a area de negocios e a area de desenvolvimento. Ambas as areas devem cooperar para
0 sucesso e cada uma deve focar partes especificas do projeto. Desta forma, enquanto a area
de negacios deve decidir sobre 0 escopo, a composi¢do das versdes e as datas de entrega, 0s
desenvolvedores devem decidir sobre as estimativas de prazo, 0 processo de
desenvolvimento e o cronograma detalhado para que o software seja entregue nas datas
especificadas.

2 — Entregas frequentes: visam a construgdo de um software simples, atualizado a medida
gue novos requisitos surgem. Cada versdo deve conter 0s requisitos de maior valor para o
negocio. Isto evita surpresas como a necessidade de grandes modificacbes apds varios
meses de trabalho, torna mais precisas as avaliagdes e aumenta a probabilidade de o
software final estar de acordo com as necessidades do contratante.

3 — Metéfora: sdo as descri¢cdes de um software sem a utilizacdo de termos técnicos, com o
intuito de guiar o desenvolvimento de software.

4 — Projeto simples: o programa deve ser o mais simples possivel e satisfazer os requisitos
atuais, sem a preocupacéo de requisitos futuros.



5 — Testes: focaliza a validagé@o do projeto durante todo o processo de desenvolvimento. Os
programadores desenvolvem o software criando primeiramente os casos de testes.

6 — Programacdo em pares: a implementacdo do coédigo é feita em dupla, ou seja, dois
desenvolvedores trabalham em um Unico computador. Uma grande vantagem da
programacdo em dupla é a possibilidade de os desenvolvedores aprenderem um com o
outro. O cddigo possui maior probabilidade de estar correto, uma vez que duas pessoas
estdo preocupadas em sua implementacdo. A programagao em pares possibilita que revisdes
sejam feitas j& durante a implementacdo do software.

7 — Refatoracdo: focaliza o aperfeicoamento do projeto do software e estd presente em todo
o0 desenvolvimento. A refatoracdo deve ser feita sempre que for possivel simplificar uma
parte do software, sem que seja perdida nenhuma funcionalidade.

8 — Propriedade coletiva: o codigo pertence a todos os membros da equipe. Uma grande
vantagem desta préatica € que, caso um membro da equipe deixe o projeto antes de conclui-
lo, a equipe conseguird termina-lo com pucéas dificuldades, visto que todos conhecem o
software, mesmo que nao seja de forma detalhada.

Um beneficio adicional é a menor dependéncia de um autor especifico, como no caso de um
programador “her6i”.

9 — Integracdo continua: uma vez testado e validade, o codigo produzido por uma equipe
deve ser integrado ao sistema e este, por sua vez, também deve ser testado. Dessa maneira,
o software é construido e verificado gradativamente, possivelmente sendo mais facil isolar
erros e suas causas. Esta pratica é facilitada com o uso de apenas uma maquina de
integracdo, que deve ser de livre acesso a todos 0s membros da equipe.

10 — Trabalho semanal de 40 horas: a XP assume que ndo se deve fazer horas extras
constantemente. Caso seja necessario trabalhar mais de 40horas pela segunda semana
consecutiva, hd um problema sério no projeto que deve ser resolvido ndo com o aumento de
horas trabalhadas, mas com melhor planejamento, por exemplo. Esta pratica procura
ratificar o foco nas pessoas e ndo em processos e planejamentos. Preferencialmente, 0s
planos devem ser alterados, em vez de sobrecarregar as pessoas.

11 — Cliente presente: o cliente deve estar sempre disponivel para sanar todas as duvidas de
requisitos. Isto evita atrasos e até mesmo construgdes errbneas. Uma idéia interessante é
manter o cliente como parte integrante da equipe de desenvolvimento.

12 — Codigo-padréo: a padronizacéo favorece o trabalho em equipe e a propriedade coletiva
do codigo.

A XP ¢ ideal para ser usada em projetos em que os stakeholders ndo sabem
exatamente o que desejam e podem mudar muito de opinido durante o desenvolvimento.

A préatica do feedback constante permite, entdo, adaptar rapidamente o produto.
Outro ponto positivo sdo as entregas freqlientes de software executavel: o cliente nao
aguarda um longo periodo antes de conhecer o produto, testa-lo e apontar novas mudancas.
A interacdo e teste continuos também contribuem para a melhora na qualidade. A fase de
integracdo cléssica é assim substituida por vérias pequenas integracbes de novos
componentes, em que eventuais problemas sdo detectados e resolvidos constantemente.



A XP apresenta também alguns problemas [SOARES, 2004]. Muitos acreditam que
a metodologia seja uma volta ao processo caotico de desenvolvimento de software,
conhecido também como “codifica-remenda”. Esse modelo existe principalmente em
pequenas e médias organizacbes que ndo podem suportar os altos custos de
desenvolvimento das metodologias tradicionais. Além disso, o uso errébneo da XP pode
inibir certas praticas positivas de desenvolvimento, como, por exemplo, a andlise do
problema por meio de diagramas. Obviamente, ndo se devem projetar diagramas que nunca
serdo consultados, mas é importante projetar alguns modelos que ajudardo no entendimento
do problema.

A informalidade no levantamento de requisitos pode ndo ser bem vista pelos
clientes, que podem sentir-se inseguros. Situacdo semelhante pode ocorrer com a
refatoracdo de cddigo, que pode ser interpretada pelos clientes como amadorismo e
incompeténcia.

Segundo BECK (2001), o criador da XP, ha ainda outros fatores que podem tornar a
metodologia inadequada. Por exemplo, profissionais que ndo se adaptam bem a préaticas de
equipe, como a programacdo em duplas, podem ter muita dificuldade em aceitar a XP. A
exigéncia de gque a equipe ndo esteja geograficamente separada cria sérias dificuldades,
sobretudo em grandes empresas onde isso € mais comum.

As 12 préticas da XP apoOiam-se mutuamente e, portanto, em principio se deve
aplica-las em conjunto. Exemplificando, ndo usar a programacdo em dupla pode
comprometer a propriedade coletiva de cddigo. Contudo, a implantacéo de todas as praticas
simultaneamente pode ser percebida de forma confusa pela equipe. Beck sugere, entdo, que
as praticas sejam implantadas uma a uma, 0 que permite a equipe uma adaptacdo gradual e
segura, evitando desentendimento e pressoes.

Fonte: “UMA METODOLOGIA DE DESENVOLVIMENTO DE SISTEMAS PARA
UMA EMPRESA DE PLANO ODONTOLOGICO” - UNIVERSIDADE FEDERAL DA
BAHIA - DEPARTAMENTO DE CIENCIA DA COMPUTACAO



