
METODOLOGIA DE DESENVOLVIMENTO DE SISTEMAS 

 

 Uma metodologia de desenvolvimento de software é um conjunto de atividades que 

auxiliam a produção de software. O resultado dessas atividades é um produto que reflete a 

forma como todo o processo foi conduzido. Pode ser caracterizada como um framework de 

processos organizacionais que, se usados adequadamente, garantem o sucesso da área de 

Engenharia de Software. 

 

 Conforme CARVALHO (2001), “uma metodologia de desenvolvimento detalha as 

atividades do ciclo de vida, especificando um conjunto único e coerente de princípios, 

métodos, linguagem de representação, normas, procedimentos e documentação, que 

permitem ao desenvolvedor de software implementar sem ambigüidade as especificações 

advindas das fases do ciclo de vida do software”. 

 

 Embora tenham sido criadas várias metodologias para o desenvolvimento de 

software, existem atividades fundamentais comuns a todas elas [SOMMERVILLE, 2003]: 

 

 Especificação: definição das funcionalidades e demais características do produto. 

 Projeto e implementação: o software é produzido de acordo com as especificações. 

Nesta fase são propostos modelos por meio de diagramas que serão implementados 

em alguma linguagem de programação. 

 Validação: atividades de revisão e testes visando a assegurar que os requisitos sejam 

cumpridos. 

 Evolução: atividades de manutenção, por exemplo, para adaptar o software a novas 

necessidades do cliente. 

 

 Um ambiente de desenvolvimento de software de qualidade se inicia com uma 

sólida definição do processo que inclui atividades usualmente definidas como fases, tarefas, 

passos, e o que será produzido por cada uma dessas atividades. O processo também 

especifica a ordenação das atividades, que podem ser seqüenciais, concorrentes ou em 

paralelo, e todas reunidas definem a base da execução do desenvolvimento. 

 

 Muitas organizações erradamente confundem o processo com a utilização de certas 

ferramentas de desenvolvimento [COSTA, 1999, p. 28-30]. 

 

 Em particular, as pequenas e médias organizações não possuem recursos suficientes 

para adotar o uso de metodologias pesadas e, por essa razão, normalmente não utilizam 

nenhum processo. O resultado dessa falta de sistematização na produção de software é a 

baixa qualidade do produto final, além de dificultar a entrega do software nos prazos e 

custos predefinidos e inviabilizar a futura evolução do software. 

 

 

 

 

 

 

 

 

METODOLOGIAS EXISTENTES 

 

 O número de metodologias propostas para o desenvolvimento de software atingiu 

um número demasiado elevado, o que torna virtualmente impossível a sua apresentação. Por 



isso, enumeramos algumas metodologias, estruturadas e orientadas a objeto, conhecidas que 

maior relevância e divulgação tiveram. Para além destas, existiram outras contribuições 

importantes que não estão incluídas aqui por não apresentarem uma perspectiva integrada 

de todo o processo de desenvolvimento, mas apenas sugerirem anotações ou técnicas de 

modelagem. 

 

1 RUP 

 

 A Rational Software é uma empresa especializada no oferecimento de soluções para 

desenvolvimento e implantação de software, conforme informações constantes no site da 

empresa. Foi constituída por três das maiores autoridades em orientação a objetos que são 

Grady Booch, James Rumbaugh e Ivar Jacobson. 

 

 O RUP (Rational Unified Process) é uma metodologia para gerenciar projetos de 

desenvolvimento de software que usa o UML como ferramenta para especificação de 

sistemas. O RUP é composto por um conjunto de disciplinas que fornecem diretrizes para 

definição das tarefas e para atribuição das responsabilidades. Seu objetivo é garantir a 

criação de softwares de alta qualidade, que atenda às necessidades expressas pelo cliente e 

pelos usuários, e às restrições de prazo e custo. O RUP segue as melhores práticas de 

desenvolvimento de software: desenvolvimento iterativo, gerenciamento de requisitos, 

arquitetura baseada em componentes, modelagem visual do software, verificação constante 

da qualidade e controle de mudanças. 

 

 As causas dos fracassos da maioria dos projetos de desenvolvimento de software são 

similares e requerem boas práticas para que sejam evitadas. As causas mais comuns são: 

gerenciamento informal dos requisitos, não entendimento das necessidades dos usuários, 

incapacidade de lidar com as mudanças de requisitos, complexidade crescente e excessiva, 

qualidade ruim, testes insuficientes e baixa performance. O RUP busca resolver todos estes 

problemas, além de outros. Para isto ele provê as seguintes ferramentas e recursos: 

 

Desenvolvimento iterativo 

 

 O objetivo é conduzir o projeto em ondas, ou seja, em iterações. Cada iteração é 

tratada de forma tradicional, alguns requisitos e riscos mais críticos são abordados, há um 

pouco de análise, implementação, testes e implantação. Depois há outra iteração, onde 

novos requisitos são trabalhados, outros riscos são mitigados, há mais análise, 

implementação, testes e implantação, até que o produto seja concluído. 

  

 O intuito da abordagem iterativa é permitir um melhor gerenciamento dos 

requisitos, facilitando o tratamento das descobertas constantes que ocorrem durante o 

projeto: há maior facilidade para incluir novas idéias e requisitos ao projeto, o sistema é 

desenvolvido em incrementos produzindo-se novos artefatos a cada iteração, os riscos mais 

críticos são mitigados antes e a equipe converge para o objetivo final do projeto, usando 

processos previsíveis e repetitivos. Com essa abordagem, há dois grandes benefícios: 

 

• permitir que a equipe progressivamente identifique os componentes que vão compor o 

sistema e decida quais serão desenvolvidos, reutilizados e quais serão comprados; 

• a integração não é um “big bang” no final do projeto.  

 

 Como muitos riscos do projeto geralmente estão associados às integrações entre os 

componentes e os subsistemas, este mecanismo permite aumentar significativamente as 

chances de sucesso.  



 

Gerenciamento de requisitos 

 

 O desafio do gerenciamento de requisitos está no fato de que os requisitos são 

dinâmicos e mudam durante a vida do projeto. 

 

Arquitetura baseada em componentes 

 

 A abordagem de desenvolvimento baseado em componentes viabiliza o reuso e a 

personalização de componentes em larga escala, sejam eles desenvolvidos em casa ou por 

terceiros. As aplicações são construídas combinando-se várias partes, algumas pertinentes 

ao domínio do problema e outras para construção do GUI, acesso a dados, comunicação e 

outras funcionalidades. 

 

Modelagem de software 

 

 Um modelo é uma simplificação da realidade que descreve completamente o 

sistema a partir de certo ponto de vista. O RUP trabalha com os modelos providos pelo 

UML: Análise, Banco de dados, Caso de Uso, Implantação, Implementação, Negócio, 

Design e Teste. 

 

Verificação constante da qualidade 

 

 A cada iteração o software é testado, num processo de avaliação contínua da 

qualidade, verficando-se quais cenários falharam e onde, e quais não foram exercitados. A 

verificação da qualidade requer a criação de testes para cada cenário, que, por sua vez, 

representam o comportamento esperado do sistema. 

 

Controle de mudanças 

 

 O processo de controle de mudanças tem o objetivo de controlar as versões dos 

artefatos criados e modificados durante o projeto. O desafio é maior quando a equipe é 

grande, dispersa em muitos locais, com várias plataformas, muitos sistemas e componentes. 

 

Estrutura estática 

 

 Os processos definem “quem” está executando “o que” e “quando”. O “quem” está 

associado aos papéis que as pessoas vão executar no projeto, sendo que uma mesma pessoa 

pode executar mais de um papel. O papel define as responsabilidades e as tarefas que serão 

executadas como, por exemplo, analista de sistemas, designer, projetista de testes, dentre 

outros, sendo que cada papel requer certo conjunto de conhecimentos. 

 

 O “o que” está associado às atividades desempenhadas e aos artefatos trabalhados 

pelas pessoas executando determinados papéis. Cada atividade representa um pacote de 

trabalho ou tarefa resumo e produz um resultado relevante para o projeto, geralmente 

associado à criação ou atualização de um artefato. 

 

 O “quando” está associado ao sequenciamento das atividades, que devem ser 

agrupadas e seqüenciadas de modo a produzir resultados de valor para o projeto. Os 

processos devem ser adaptados às várias fases do projeto, em função dos objetivos das 

fases. 

 



Estrutura dinâmica 

 

 A abordagem iterativa foi concebida para acomodar mudanças de objetivos e 

estratégias, pertinentes aos projetos de desenvolvimento de software. Algumas das causas: 

usuário muda de idéia, o problema muda, mudanças técnicas e mudanças de mercado. 

 

 

FASES 

 

 No RUP, o projeto é composto por quatro fases: concepção, elaboração, construção 

e transição. Ao contrário da abordagem em cascata, as fases não seguem uma seqüência 

tradicional de requisitos, análise, programação, integração e testes. Estas fases existem em 

todos os projetos e cada uma termina num marco relevante para o projeto, quando uma 

decisão deverá ser tomada – continuar o projeto e aprovar os recursos para a próxima fase 

ou cancelar. Cada fase do projeto tem um conjunto específico de objetivos: 

 

• Concepção: nesta fase, o foco é chegar a um acordo com os stakeholders quanto à visão do 

sistema e aos objetivos e estimativas das demais fases do projeto  

 

• Elaboração: esta fase é um processo de engenharia, onde o foco está em especificar uma 

arquitetura robusta e confiável para o sistema e fazer o planejamento para o restante do 

projeto 

 

• Construção: a fase de construção basicamente consiste num processo de manufatura, onde 

o foco está na construção do sistema e no gerenciamento de recursos e otimização de 

tempo, custos e qualidade. 

 

• Transição: o objetivo desta fase é transferir o produto para a comunidade de usuários 

 

PROCESSOS 

 

 Os processos são procedimentos compostos de atividades logicamente seqüenciadas 

e têm objetivos específicos em relação ao projeto. Cada atividade do processo tem a 

finalidade de criar ou atualizar um ou mais artefatos. 

 

Processos de engenharia 

 

• Modelagem Corporativa: tem o objetivo de entender a estrutura e a dinâmica da 

organização na qual o sistema será entregue; identificar problemas correntes na organização 

e possíveis aperfeiçoamentos; assegurar que o cliente, o usuário final e desenvolvedores 

possuam a mesma compreensão da empresa e produzir os requisitos de sistemas necessários 

para suportar os objetivos da organização. 

 

• Requisitos: estabelecer e manter o consentimento entre clientes e stakeholders sobre o que 

o sistema deve fazer; fornecer uma melhor compreensão dos requisitos aos desenvolvedores 

de sistemas; definir os limites do sistema; fornecer as bases para o planejamento das 

iterações, estimativa de custo e tempo de desenvolvimento e definir as interfaces do sistema 

baseado nas necessidades e objetivos dos usuários. 

 

• Análise e Design: transformar os requisitos dentro de um design do que será o sistema; 

desenvolver uma arquitetura robusta para o sistema e adaptar o design para combinar com o 

ambiente de implementação, projetar para performance. 



 

• Implementação: preparar a organização do código em termos de implementação de 

subsistemas, organizados em layers; implementar classes e objetos em termos de 

componentes (código fonte, binários, executáveis, etc.); testar os componentes 

desenvolvidos como unidades e integrar os resultados obtidos por implementadores 

individuais (ou equipes) em um sistema executável. 

 

• Teste: verificar a interação entre os objetos; verificar a integração de todos os 

componentes de software; verificar se todos os requisitos foram implementados 

corretamente e verificar os defeitos e assegurar que eles foram tratados antes da entrega do 

software. 

 

• Implantação: descrever as atividades associadas à verificação do software. O objetivo é 

tornar o software disponível ao usuário final. 

 

Processos de suporte 

 

• Gerenciamento de Mudança e Configuração: identificar itens de configuração; restringir 

alterações para aqueles itens; auditar as alterações feitas neles e definir e gerenciar as 

alterações daqueles itens. 

 

• Gerenciamento de Projeto: fornecer uma estrutura para gerenciamento de projeto de 

software; fornecer um guia prático para planejamento, recrutamento, execução e 

monitoramento de projeto e fornecer uma estrutura para o gerenciamento de risco. 

 

• Ambiente: focar as atividades necessárias para configurar o processo para o projeto; 

descrever as atividades requeridas para desenvolver as guias mestres no 

suporte do projeto e fornecer, para a organização de desenvolvimento de software, o 

ambiente de processos e ferramentas que suportarão a equipe de desenvolvimento. 
 

 

Fonte: “UMA METODOLOGIA DE DESENVOLVIMENTO DE SISTEMAS PARA UMA EMPRESA DE PLANO ODONTOLÓGICO” - 

UNIVERSIDADE FEDERAL DA BAHIA - DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO 


