
L i n g u a g e m d e P r o g r a m a ç ã o
O r i e n t a d a a A g e n t e s

T Ó P I C O S A V A N Ç A D O S I - I N T E L I G Ê N C I A A R T I F I C I A L (S S I 0 7 1)

P R O F E S S O R : F A B I O O K U Y A M A

A L U N O : Y O N A T H A N S T E I N

P O R T O A L E G R E - 3 0 / 1 1 / 2 0 1 6

AgentSpeak(L)

1

O QUE É AGENTSPEAK?

É uma linguagem de programação orientada a agentes. Baseia-se na programação
lógica e na arquitetura BDI para os agentes autônomos (cognitivos). A linguagem foi
originalmente chamado AgentSpeak (L) mas tornou-se mais popular como AgentSpeak.

● Poderosa linguagem de programação para criar agentes inteligentes

● Baseado no paradigma: belief – desire – intention (BDI)

● Herança intelectual:

● The Procedural Reasoning System (PRS)

● Developed at SRI in late 1980s

● Logic Programming/Prolog

2

ARQUITETURA (BDI)
CRENÇAS – DESEJOS – INTENÇÕES

3

ARQUITETURA (PRS)
SISTEMA DE RACIOCÍNIO PROCESSUAL

4

AGENTSPEAK: Control Loop

● Agente recebe eventos que podem ser:

● Externos: a partir do ambiente ou a partir de dados perceptivos

● Internamente gerados

● Tenta tratar os eventos procurando planos que correspondam

● Conjunto de planos que correspondem ao evento são opções/desejos

● Escolhe um plano dentre os desejos e executa: torna-se comprometido com isso – uma intenção

● Ao executar o plano pode gerar novos eventos que requeiram tratamento

5

AGENTSPEAK: Beliefs

● Beliefs (crenças) representam a informação que o agente possui sobre o seu ambiente

● São representadas simbolicamente

● Átomos de fundamento lógico de primeira ordem

Arquitetura:

Exemplo:

 open(valve32)

 father(tom, michael)

 father(lily, michael)

 friend(michael, john)

 at_location(michael, gunne)

 on(blockA, blockB)

6

AGENTSPEAK: Plans

● Código desenvolvido off-line com antecedência

● Fornece informação ao agente sobre:

● Como responder a eventos

● Como atingir objetivos

● Plans:

● event

● context

● body

Arquitetura:

7

AGENTSPEAK: Plans

Estrutura:

● triggerCondition
● É um evento que o plano pode tratar

● context
● Define as condições em que o plano pode ser utilizado

● body
● Define as ações a serem realizadas se o plano for escolhido

triggerCondition :
context <-
body.

8

AGENTSPEAK: Events

Arquitetura:

● +! P
● new goal acquired --“achieve P”

● -! P
● goal P dropped

● + B
● new belief B

● - B
● belief B dropped

9

Jason is an interpreter for an
extended version of AgentSpeak. It
implements the operational
semantics of that language, and
provides a platform for the
development of multi-agent
systems, with many user-
customisable features. Jason is
available as Open Source, and is
distributed under GNU LGPL.

Jason is developed by Jomi F.
Hübner and Rafael H. Bordini, based
on previous work done with many
colleagues, in particular Michael
Fisher, Joyce Martins, Álvaro
Moreira, Renata Vieira, Willem
Visser, Mike Wooldridge, but also
many others, as acknowledged in
the manual.

10

 É uma implementação de AgentSpeak

 É uma biblioteca com ferramentas de depuração

 Possibilita o uso de multi-agentes

 Implementado em Java

 Cria um ambiente de desenvolvimento ágil

 Preparado para entrar em funcionamento rapidamente

 Software Livre (GNU LGPL)
11

JASON: Reasoning Cycle

12

JASON: Reasoning Cycle

1. Perceber o Ambiente

2. Atualizando a Base de Conhecimento (Belief Base)

3. Recebendo Comunicação de Outros Agentes

4. Selecionando Mensagens "Aceitáveis Socialmente"

5. Selecionando um Evento

6. Recuperando Todos os Planos Relevantes

7. Determinação dos Planos Aplicáveis

8. Selecionando um Plano Aplicável

9. Selecionando uma Intenção para Execução Adicional

10. Executar um Passo de uma Intenção

Passos:

13

http://jason.sourceforge.net/

https://github.com/jason-lang/jason

http://jason.sourceforge.net/Jason/Examples/Archive.html

14

http://jason.sourceforge.net/
https://github.com/jason-lang/jason
http://jason.sourceforge.net/Jason/Examples/Archive.html

http://www.oracle.com/technetwork/java/javase/downloads/

Java SE Development Kit 8

15

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

http://www.jedit.org/

https://sourceforge.net/projects/jedit/

16

http://www.jedit.org/
https://sourceforge.net/projects/jedit/

JASON: jEdit

17

JASON: Mind Inspector

18

JASON: “Hello World”

Criar um diretório chamado “hello_world”

19

JASON: “Hello World”

Abrir o arquivo JAVA “jedit.jar” dentro do diretório “jedit”

20

JASON: “Hello World”

Clicar em “New Project”

21

JASON: “Hello World”

Dar um nome ao projeto e selecionar o diretório raiz do diretório criado

22

JASON: “Hello World”

Será criado um arquivo de mesmo nome no diretório “hello_world”

23

JASON: “Hello World”

Adicionar um agente clicando em “Add agent in project”

24

JASON: “Hello World”

Dar o nome “hello” e confirmar

25

JASON: “Hello World”

Será criado um agente com a definição padrão

26

JASON: “Hello World”

1. // Agent hello in project hello_world.mas2j
2.

3. /* Initial beliefs and rules */
4.

5. /* Initial goals */
6.

7. !start.
8.

9. /* Plans */
10.

11. +!start : true <- .print("hello world.").

Explicação:

 O agente tem um único objetivo inicial: !start
 Este objetivo está lá quando o agente é iniciado
 O ponto de exclamação diz "este é um objetivo"
 Existe um único plano, que diz “se você tiver adquirido o objetivo start" deve: imprimir “hello world"

27

JASON: “Hello World”

Clicar em “Run MAS” para executar o programa

28

JASON: “Hello World”

Programa executado com sucesso!

29

JASON: Book

30

